Design real-time reversal of tumor multidrug resistance cleverly with shortened carbon nanotubes

نویسندگان

  • Pingping Wu
  • Shang Li
  • Haijun Zhang
چکیده

Multidrug resistance (MDR) in tumors renders many currently available chemotherapeutic drugs ineffective. Research in nanobiotechnology-based therapeutic alternatives has provided innovative and promising strategies to overcome MDR. The aim of this study was to investigate whether the new strategy of a co-loaded reversal agent and chemotherapeutic drug with shortened carbon nanotubes (CNTs) would show useful effects on the real-time reversal of tumor MDR. CNTs were cut and purified via ultrasonication and oxidative acid treatment to optimize their length for drug-delivery vehicles, then verapamil (Ver) and doxorubicin (Dox) were co-loaded on shortened CNTs (denoted as Ver/Dox/shortened CNTs), which acted as a drug delivery system. The multidrug resistant leukemia K562/A02 cells were treated with the denoted Ver/Dox/shortened CNTs. The real-time reversal of tumor MDR were evaluated by flow cytometer, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, acridine orange/ethidium bromide staining, and Western blot analysis. In the same MDR tumor cells the new strategy of a co-loaded reversal agent and chemotherapeutic drug with CNTs could inhibit the function of P-glycoprotein in real-time by Ver as reversal agent, significantly increase the uptake of Dox, enhance the sensitivity of the MDR cancer cells to the chemotherapeutic agent, and induce apoptosis. It was therefore concluded that a co-loaded reversal agent and chemotherapeutic drug with shortened CNTs could have real-time reversal ability of MDR in tumors, which could represent a promising approach in cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversal effect of vitamin D on different multidrug-resistant cells.

We investigated the reversal effect of vitamin D on the multidrug-resistant leukemic Jurkat/ADR and K562/ADR cell lines and conducted a preliminary investigation of its reversal mechanism. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the reversal effect of vitamin D on multidrug-resistant cells. Real-time polymerase chain reaction was used to ...

متن کامل

RNAi Induced Inhibition of MRP1 Expression and Reversal of Drug Resistance in Human Promyelocytic HL60 Cell Line

Multidrug resistance (MDR) is a complex phenomenon in which many different genes regulating drug transport, cellular repair, detoxification and drug metabolism are involved. Nevertheless, in most drug resistant cell lines and cancer patients up-regulation of ABC-transporter genes such as MDR associated Protein (MRP1) gene could be at the basis of the drug resistance phenotype. We aimed to decre...

متن کامل

بررسی کارایی نانولوله کربنی چند جداره اکسید شده در حذف سرب از محیط آبی

Introduction: Carbon nano tubes are products which have the ability to remove some contaminants from aqueous solutions and wastewater. The efficiency of these products depends on different factors such as PH, concentration, contact, mixing time, etc. in this research the efficiency of oxidized multi- walled carbon nanotubes is studied. Methods: The study is Experimental. The multi-walled carbon...

متن کامل

CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...

متن کامل

Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system

The study investigated the reversal of multidrug resistance (MDR) and the biodistribution of nanoparticles (NPs) that target leukemia cells in a nude mice model via a surface-bound transferrin (Tf). The cytotoxic cargo of daunorubicin (DNR) and tetrandrine (Tet) was protected in the NPs by an outer coat composed of polyethylene glycol (PEG)-poly-L-lysine (PLL)-poly(lactic-co-glycolic acid) (PLG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014